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ABSTRACT

A summary of a ten week project on flexible multibody
modeiing, verification and control is presented. Emphasis
was on the need for experimental verification. A literature
survey was conducted for gathering information on the
existence of experimental work related to flexible mul tibody
systems. The first portion of the assigned task encompassed
the modeling aspects of flexible multibodies that can
undergo large angular displacements. Research in the area
of modeling aspects were also surveyed, with special atten-
tion given to the component mode approach. Resulting from
this is a research plan on varicus modeling aspects to be
investigated over the next year. The relationship between
the large angular displacements, boundary conditions, mode
selection, and system modes is of particular interest.

The other portion of the assigned task was the genera-
tion of a test plan for experimental verification uof analyt-
ical and/or computer analysis techniques used for flexible
mul tibody systems. Based on current and expected frequency
ranges of flexible multibody systems to be used in space
applications, an initial test article was selected and

designed. A preliminary TREETOPS computer analysis was run
to ensure frequency content in the low frequency range, 0.1
to 50 Hz. The initial specifications of experimental
measurement and instrumentation components were also gener—
ated. Resulting from this effort is the initial multi-phase
plan for a Ground Test Facility of Flexible Mul tibody
Systems for Modeling Verification and Control. The plan

focusses on the Multibody Modeling ard Verification ({MMV)
Laboratory. General requirements of the Unobtrusive Sensor
and Effector (USE) and the Robot Enhancement (RE) laborato-
ries were considered during the laboratory development.
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INTRODUCTION

The NASA's LSS GTF (Large Space Structure Ground Test
Facility) at MSFC (Marshall Space Flight Center) was devel-
oped for meeting the desired objectives of complex space
projects and to become a national test bed for investiga-
tions in dynamics and controls [1]. The topics of this
facility can be grouped into control development and synthe-
sis, dynamics verification, dynamic modeling, and hardware
flight systems for space structures. Due to the increase in
complexity and more stringent requirements on spacecraft
structures, investigations of multibody dynamics modeling
and control have become essential. Many of the future space
r1-5ions (such as extremely accurate pointing and tracking
systems and the attainment of vibration-free observation
image planes) require high performance from the LSS. The
required state-of-the-art systems to be or currently under
development consist of complex arrangements of intercon-
nected rigid and flexible bodies. Presently, the LSS GTF
provides ground test capabilities for many experiments
involving large structures with flexible componants.
Therefore, a natural extension of the laboratory’s activi-
ties would be to investigate the dynamics and controls of
flexible multibody systems. Hence, presented in this report
is a plan for addressing these needs and bringing into
realization the Multibody Modeling and Verification (MMV)
Program at the MSFC/LSS GTF.

Project Overview and Objectives

Since the 1960's, a significant amount of theoretical
work has been undertaken in the area of modeling and simula-
tion of multibody systems. However, for systems having
flexible components, there still seems to be no well defined
method for selecting comporent modes for systems, in which
due to large displacements, the boundary conditions of the
original assumed modes varies. Furthermore, there has been
very limited experimental verification of the existing

modeling and simulation technigues. In view of the last two
statements, the summer task definition encompassed the
following. First: The modeling aspects of flexible multi-

bodies that can undergo large angular displacements are to
be studied. The thrust of the study is for determining the
sufficiency of component mode synthesis based on individual
flexible component data for ascertaining the system modes.
The systems subject of this study are those that exhibit
configurations other than the initial one used for deter-
mining the component data. Second: A test plan is to be
generated so that analytical and/or computer analysis can be
verified experimentally. Third: I1If time permits, control
methods for multibody systems are to be surveyed and an
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experimental test plan generated for multibody control
veritication. The project’'s ten week procedure set forth
was to achieve as much of the first two tasks' objectives as
stated above. The third task was set aside and only taken
into account throughout the project execution when it was
appropriate.

Rese her

In an attempt to complete a good portion of the tasks
set forth, much time was spent in collecting background
information and technical articles on flexible multibody
systems. The literature search indicated a recently strong
and growing interest emerging for developing experimental
verification facilities [1, 2, 3, 4 and 5]. Much of the
work in the field of multibody systems was largely motivated
by the spacecraft problem [2]. This problem required
analysis of systems experiencing large rotations while
components (such as antennas and solar panels) were under-—
going large relative motions. Another area in which inde-
pendent developments of the same problems were simul tane-
ously being addressed was in kinematics and machine design
(6]. With today s technical advances and demands, re-
searchers in both areas have been brought together by their
common interests.

Due to the combination of both rigid body large dis-
placements and small elastic deformations occurring in
flexible multibody systems, the dynamic models have complex
nonlinearity and model reduction problems. The conventional
model reduction (modal coordinate truncation) methods still
have not been securely established [7]. Other questions
also arise in the representation of energy dissipation
characteristics, selection of modes and boundary conditions,
just to name a few. Hence, with varying degrees of general-
ity and model complexity, a variety of ways have been
developed for deriving the equations of motion for multibody
systems [B-39]. These range from employing the Newton-Euler
formulations, Hamilton's equations, Kane's method,
Lagrange's form of D’'Alembert’'s Principle approach to
Component Mode Synthesis techniques directly or with special
model variations. The methods and their variations can also
be grouped as either an assumed mode approach or a finite-
element approach. The modeling variations have been in
terms of generalized coordinate selection, joint interfacing
and flexibility modeling, representation of model uncertain-
ties, computational bottleneck reduction, control system
development, etc. To some degree the basic modeling choice
is a matter of preference since the different strategies
often produce the same results. Using ones preferred
modeling scheme and computational methods, various computer
simulation codes have been developed and made available to
the research and commercial community. The list of computer
codes is endless; MBODY, MFLEXBODY, DISCOS, AFBDAP,
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TREETOPS, ADAMS, SADACS, CONTOPS, GRASP, MIDAS . . . . .

New versions are continuously being generated as advances in
research require updates and corrections to the codes when
various problems are encountered. As of yet, no systematic
comparison of these codes for accuracy or efficiency has
been generated [2, 40]. Presently, JPL (Jet Propulsion
Laboratory) is conducting a simulation technical verifica-
tion survey with plans to develop an experimental verifica-
tion facility [3].

The experimental research on flexible multibody systems
can be found arising out of basically two areas: flexible
structures with multiple components [19, 41, 42] and the
robotics area. In the robotics area, there is numerous
amounts of experimental work focussing on the rigid system.
Only in recent years have researchers begun pursuing the
issues of flexibility in the arms and joints [4, 20, 43-48].
This has been due to the increase in importance of high-
speed operation, high accuracy requirements and lightweight
designs for manufacturing and new space missions. Further-
more, with the advent of high speed computers, simulation
analyses have become feasible. Also, in the field of
flexible multibody systems are problems such as those
studying the vibrations effects in high-speed machines and
mechanisms which have had some experimental verification
[49].

Need for Multibody Modeling, Verificatiaon and Contral GTF

Although numerous theoretical and numerical research
has been undertaken, very little experimental work has been
carried out in the multibody dynamics and controls field.
With the advantages of low power consumption, high load to
weight ratios, large workspaces, and potential for high
speed operation because of lower inertia, the currently
proposed designs for lightweight high-performance multibody
and/or robotic systems for space applications make it
essential to analyze the fundamental modeling issues 1in
greater detail. To enhance the understanding of multibody
dynamic modeling and control, experimental verification is a
key element. Issues which need to be addressed are the
dynamic effects such as the interactions between the rigid
and flexible dynamics, the sensor and actuator dynamics, and
the model and controller dynamics. All these need to be
analyzed and correlated with reference simulation models;
hence, experimental verification of existing modeling and
simulation methods. For future space missions which involve
many multibody applications, ground testing is necessary to
ensure their in-flight success and the safety o7 the crew.
Furthermore, it is far less expensive to do the major
research, analysis, and development of flight experiments in
ground tests, readying them and the crew for the mission.
Ground testing prior to flight has been the universally
insisted upon approach for most aerospace structural systems
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{50). Current and proposed experimental research is now
summarized.

The experimental approaches taken by researchers have
been to work either in the horizontal plane, in an attempt
to aveoid gravitational effects in modeling [4, 48]; or the
vertical plane, in which gravity must be included in the
model and compensated for numerically, or offloading tech-
niques must be used such as bungy suspension cables [3, 20,
44, 45]. A third approach is to perform the flexible
multibody experiments in space. Presently, space missions
are under development or proposed which involve experiments
using the RMS arm on the orbiter [46, 47] and scaled multi-
body experiments to be conducted in the shuttle’'s middeck
area (MACE), [5]. The orbiter-based experiments have their
merits and will eventually need to be executed as future
space missions warrant them. However, these in-flight
experiments also have associated supporting ground testing
laboratory development [3]. Even after orbiter-based
testing techniques are fully devised and implemented, ground
testing will be required and will usually constitute the
highest loading environment [50). Hence, the need for GTFs
is considered essential for the successful execution of the
expensive in—-flight multibody experiments and future space
missions.

Currently, the actual experimental research performed
thus far has been limited to single link flexible arms and
two links with only one being flexible [4, 20, 44, 48]. An
exception to this, Book et al [45] has done extens.ve
investigations using a planar arm with two flexible links.
Cannon et al is currently extending his work to include two
flexible links.

Inspite of these efforts, there still needs to be more
experimental research. Book et al [45] has shown by experi-
mental verification that using strictly simulation methods
can result in one missing some of the system modes in their
analysis. He has also shown that experimental results
assist in the determination of proper boundary conditions
for analytical modeling. That 1s, boundary condition
selection affects the accuracy of the analysis signifi-
cantly; further, substantiating the need for experimental
verification of existing modeling and simulation techniques.
The maximum reliability and accuracy achieved by the corre-
lation and modeling of dynamic parameters based on experi-
mental and analytical results are also considered important
aspects in aerospace engineering {51]. What follows is the
1989 Summer Faculty project’'s results in modeling aspects of
flexible multibody systems and the initial plan for address-
ing the above foreseen needs of future space missions
involving multibody systems (e.g. assembly of the space
station, etc.)
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MODEL ING

After surveying the various technigues and focussing on
the question at hand {component mode selection versus system
modes and large angular displacements), the Lagrangian
formulation of the equations of motion using assumed modes
{8] was selected. This to a large degree was a matter of
personal preference and familiarity with the formulation
technique. In addition, this approach for deriving the
dynamic equations was selected because the resulting analyt-
ical form facilitates the exploration of the coupling
relationship between the flexible and rigid body mctions of
the individual links and that of the total system. Also,
this approach is less computationally intensive compared to
the FEM approaches. The coupling appears in the off-diago-
nal matrix terms in the following compact symbolic represen-
tation of the system's equations of motion.

mey g my |[R] [0 0 o 'k] cL

me mg |8 +]0 0 0 }[0 |+ |CE N
symmetric m', || §Y 0 0 Ky! %J C£ (1)
Q)] |(Q)r
=l (@) +](Q), |, i=1,2,....n,
(@), ] [(Qi),

Using the component mode synthesis, the component equation
of motion for each baody in the system 1is as follows.

com @] [oooo {far] Q)] ()} 1<

(] i i + ] d = i + i - . x (2)
m, MW, |iq 0 K// q; l(Qc)/ (Qu)/ CqT‘,

Both forms have their corresponding constraints represented
by the C matrices. Analyzing and understanding equations
(1) and (2) are important for achieving the main objective
of the MMV laboratory; that is, model verification. Being
able to relate quantities in the equations of motion in
terms of component mode synthesis and system modes with
experimaental results is critical. One should recall that
modeli verification is a process of experimentally verifying
an analytical (or numerical) model to gain confidence in its
use for predicting system behavior {S521. I[f there exists
any system misrepresentation, the model must be revised
based on the new physical evidence. Note, caution must
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always be taken to avoid the risk of changing the model to
match data which are in error.

Applying the above symbolic formulations, the equations
of motion of a planar multibody with three flexible links
are derived. The links are assumed to be Euler—-Bernoulli
beams, in bending only, and attached by pin (revolute)
joints. Gravity is included in the modeling since the MMV
laboratory test articles are to be tested in the vertical
plane. See figure 1. The next steps involve detailed
analysis of component mode and boundary condition selection
as a function of rigid-body motions. These steps have been
left for execution during a proposed continuation project
over the next twelve months. The project will be a study on
the highly nonlinear functional relationship between rigid
body and flexible body motions. The analysis will also
include numerical techniques (TREETOPS and NASTRAN) in
searching for an explicit and useful form of this relation-
ship.

Next, an initial description of a MMV test article and
its physical properties is given. The article is defined to
exhibit low frequency content (0.1 Hz to 50 Hz), coupling
between rigid and flexioble body motions, and multiple
configurations (open and closed tree topologies) due to
large angular displacements, and to be of a large size to
mimic those to be used in space applications. The three
link flexible multibody of figure 1 possesses these charac-
teristics. However, in selecting the physical dimensions,
sensors, and actuators (torquers), the maximum torque versus
weight characteristics of torquer motors significantly
limited the feasibility of this multibody in open tree
topology. To overcome the limitations, there are two
options to choose: gravitational offloading via bungy
suspensions or counter—-balancing, or to redesign the test
article. Since the dynamic interactions of bungy suspen-
sions with test articles is not clearly defined and the use
of counter-balancing results in greater system masses, the
second approach is selected while keeping the other options
still open.

The new test article currently under investigation is
one in which the third link is made of S5-Glass, arn extremely
lightweight and highly flexible material. It consists of a
double branch formation to enhance the modal density, see
figure 2. The other two links are made of a carbon/carbon
composite material (lightweight and high strength). To meet
the flexibility regquirements, link one is selected to have a
rectangular tubular cross-section with a wall thickness of
t=0.34cm. Link two has a solid rectangular cross-section.
The cross—-sections are selected to exhibit a large degree of
flexibility in only one plane. The cobjective is to restrict
the first experimental testing to a plamnar flexible multi-
body system. However, out-of-the-plane wotions will be
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measured during the experimental testing to ensure planar
motion is maintained. Future experiments will be conducted
for spatial motion systems. The current multibody material
and physical properties are listed in Table 1, [53].

To ensure desired frequency content before fabrication,
s TREETOPS analysis was performed for the new test article.
The component modes selected were:

Link One Clamped-free with a concentrated mass at the
free end equal to the mass of motors two and
three, and links two and three. See figure 3.

Link Two Clamped-free with a concentrated mass at the
free end equal to the mass of motor three and
link three. See figure 4.

Link Three Clamped-free. See figure 5.

The resulting component mode shapes and frequencies are
given in Table 2. Table 3 shows the corresponding system
modal frequencies and definitions of the terms usedg in Table
2. The lowest system mode was found to be 1.26 Hz. Compar-
ing the system modes and the component modes shown in the
tables, there appears to be very little modal coupling
between the links. This is indicated by very little changes
in the values between the component mode and system mode
frequencies. Presently, there is still some uncertainty in
whether the actual frequency content found from the TREETOPS
analysis contains enough modal density in the low frequency
range and if the values are correct. Since only one multi-
body static configuration (see figure 6) and set of boundary
conditions has been analyzed, and the effects of gravity and
sensor/actuator weights were not included, further TREETOPS
and NASTRAN analyses are planned before finalizing the test
article description for fabrication. This will be carried
out in the proposed continuation project.
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EXPERIMENTAL VERIFICATION (Ground Test Facility)

Moving into the next summer task, the following is a
general plan for the Multibody Modeling Verification (MMV),
Unobstrusive Sensors and Effectors (USE), and Robot Enhance-
ment (RE) laboratories. The main focus is on the MMV
laboratory with USE and RE space and general objectives
specified. In defining the specifications for the data
acquisition and analysis system, the test article described
in figure 2 and Table 1 (or one similar) is assumed. Hence,
measurement of the frequency range, 0.1 Hz to 50 Hz, is a
specified requirement of the facility. The vertical plane
(1-g) testing environment selection is heavily driven by the
available space. However, this choice is considered viable
based on past success by NASA/MSFC LSS GTF and Book et al
[45] in conducting flexible body experiments in the same
environment, and that many other experts in the flexible
multibody for space applications field have vertical plane
testing built into their overall projected laboratory plans
{5]. In addition, designing the facility for vertical
testing allows easy extension of the experiments to include
large spatial motions. The general overall outline of the
new multi-laboratory GTF is now given.

Phase 1. (MMV) Main objectives are to improve multibody
modeling and simulation and to experimentally verify
component mode synthesis methods [1]. The test arti-
cles are to be planar and spatial in their motion
characteristics.

A. Static
The first experiments to be conducted in MMV are
to be of static multibody configurations. The results
are to be used for static verification of the component
mode selection process and to determine if a purely
kinematic relationship exists between mode selection
and large displacements. Open and closed tree topolo-
gies are to be tested, see figure 7.
B. Dynamic
Following static tests, the test articles are to
be slewed through large angular displacements. The
objective is to verify the dynamic relationship between
component mode selection and large angular motions and
rates. Plus, the laboratory is to be used for veri-
fying existing dynamic modeling and simulation tech-
niques.
C. Control
After exhaustive testing and analysis of parts A
and B, the laboratory activities will involve the
development, implementation and experimental verifica-
tion of control techniques for flexible multibody
systems.
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Phage ]I. (USE) Laboratory is to investigate the use
of sensors and actuators which are lightweight and have
unobtrusive geometries. (The piezoelectric materials
currently being tested will be used in the MMV labora-
tory) [1]. NASA/MSFC LSS Laboratory currently has a
bid out for the acquisition of the LADD hardware to be
used as a test article, see figure 8 [54].

Phase 111. (RE) Laboratory is to involve a combination
of (MMV) and (USE) results and to investigate the
concept of a robot arm manipulating its highly flexible
payload with assistance of the payload’'s own actuators
and sensors by controlling them through electrical
contacts in the endeffector. Hence, to prevent the
TAIL Wagging the DOG phenomenon. An experiment involv-
ing the LADD suspended from a flexible boom is also
being considered.

X imental Procedur

In this project, only the experimental procedures,
instrumentation and hardware for the MMV laboratory are
specified. The following experimental procedures will
describe only the initial planar flexible multibody experi-
ments. The results of these experiments will provide vital
information for the future spatial motion tests definitions.

Component Modal Experiment. This first experiment is
to determine and verify the component modal selections for
each link of the test article, individually. Each link will
be suspended from the test stand in its desired orientation
with the same boundary conditions as assumed for the analyt-
ical model (e.g. clamped-free at a 30 degree angle from the
vertical and with a lumped mass at the free end). Using
standard experimental modal analysis techniques, the com-
ponent modal properties will be determined under various
excitations. The sensors will be accelerometers, strain-
gauges, and/or piezoelectric films.

Assembled Multibody System (Static). This experiment
is to determine the system modal properties of the multibody
in various static configurations. These will be used to
verify the analytical model. 1f discrepancies are found
between the analytical (and/or numerical) and the experi-
mental results, steps will be taken to eliminate them or to
formulate an explanation for delineating the nonconvergence.
The assembled test article will be suspended from the test
stand in various selected static configurations (open to
closed tree topology when possible). In each configuration,
standard modal testing techniques will again be used to
determine the system modal properties. The same sensors as
before will be used. The results will be compared with
those obtained theoretically. Model and/or experimental
adjustments and retesting will be done accordingly.

XXXI1I-9



embled Multibody System (Dynamjc). Following the
above experiments, dynamic tests will be performed to
determine the existence of a dynamic relationship between
component modal selections and large angular motions and
rates. Dynamic modeling and simulation techniques will also
be verified. This experiment will involve equipping the
static experiment s flexible multibody test article with any
additional necessary joint actuators and sensors. The test
article will then be commanded (open-loop control) to move
through prescribed large angular motions. Simultaneously,
sensor readings will be taken to determine the system's
total response. Again, a theoretical and experimental
correlation will be made followed with any model or experi-
mental adjustments and generated explanations of noncon-
vergences.

Assembled Multibody System (Control). Utilizing the
knowledge gained from the previous experiments, control
techniques will be derived and implemented experimentally.
Again, the sensors and instrumentation will essentially be
the same with only special control features added.

The above experiments will be extended to include other
test articles, both planar and spatial motion types.

Laboratory Facility and Layout

Figure 9 illustrates the general facility layout of the
three laboratories, MMV, USE and RE. The physical space,
already allocated for these laboratories, is located at
NASA/MSFC, Huntsville, Alabama in the west high bay area of
Building 4619. 1t consists of a 53.5'x29.0" floor space
with approximately a 20’ ceiling. The location is just east
of the Flight Robotics Laboratory (EB-24) and west of the
ACES and CASES control room. There is an existing platform
at 42.5" with this control room as its only access. The
present major structural layout of this space is shown in
figure 10 (showing platform only) and 11 (top view after the
removal of unused air-handling units along east wall and
below the platform, verbal approval has already been given).

After surveying the facility, 1t was decided that using
the existing platform with its access from the ACES and
CASES control room would provide the most expeditious and
cost effective approach for implementing the MMV and USE
laboratories. The platform allows enough vertical height
for suspending both the LADD structure and MMV test article,
see figure 9. In addition, the control room has room for
setting up the data acquisition and control equipment and is
conveniently located. The only initial requirements will be
the removal of the unused air-handling units and a few
structural extrusions, and cutting a 5 x5 hole in the
platform for suspending the MMV tect article. And last but
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not least, the leaks in the roof will need to be fixed in
order to maintain the quality of the experimentation. The
structural rigidity of the platform appears to be adequate
for the initial implementation before final renovations (no
tests were done to verify this). If these facility changes
can be accomplished within the year, necessary instrumenta-
tion purchased, test article fabricated, and installation
completed, the MMV and USE laboratories could start testing
as early as Summer 1990.

The next stage of renovations will be to extend the
platform as indicated in figure 12 and 13. This will
provide ample volume for planned spatial flexible multibody
experiments. Structural beams and bracing will need to be
added or removed to ensure that the experiments’ supporting
structure’'s frequency content will not interfere with the
experimental testing. These details will be determined in
collaboration with the Facilities group. In order to
provide alternate access to the platform, stairs are to be
located on the north side of the platform. These stairs
will also continue up another 40’ to a second platform for
the RE laboratory (not shown in the figures). The estimated
cost for the stairs and MMV platform extension is $150,000
(1989 dollars) and ancther $250,000 for the second platform.
The projected completion of renovation for this stage is
sometime during 1990 to 1992, depending if it can be sched-
uled with the Facilities group. 1t is anticipated that the
platform extension could be completed in 1991. The second
platform probably would not be finished before 1992.

In the renovation plans, there are certain restrictions
placed on the use of this space. One, the bay area doors
must remain accessible and fully operational. Second,
general passage for NASA employees and guests to and from
the Flight Robotics Laboratory and Vibration Testing Facili-
ty must be provided (indicated in figure 13).

Measurement and Instrumentation Specifications

The following is a list of the major components of the
measurement and instrumentation equipment and their specifi-
cations needed for the MMV laboratory. This covers the
static, dynamic and most of the control experiments require-—
ments, 1t should be noted that this is only an initial list
and is subject to change as required. The specific selec-
tions of the foilowing items is based on the desired charac-
teristics of low noise—to-signal ratio, high resolution,
small physical weight additions to test article, and capa-
bility with existing ACES and CASES equipment.

Frequency range of test specimen: 0.1 Hz to 50 Hz
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The measurement equipment must be able to detect
position, velocity and accelerations within this
frequency range, in addition to large displacements.

Base Excitation Table (BET): The BET is to produce
excitations via disturbance inputs to the multibody
system for determining its dynamic characteristics and
the effectiveness of control algorithms. Disturbance
types to be included are programmable deterministic,
random, sine dwell and sine sweep motions. It must be
able to excite frequencies within the 0.1 Hz to 350 Hz
range. The directions of excitation are to be along
the horizontal x,y axes. The load carrying capacity
required is 2.3 kN. (Should be able to support test
article, sensors, actuators, and gimbal system.) It is
anticipated that the BET will be similar to the one
currently used for ACES which has a bandwidth of 10 Hz
and a dynamic range of *+15 cm. It is driven by a
hydraulic servo-loop position controller.

Augmented Advanced Gimbal System (AGS): Should provide
articulation and control about three rotational axes.
Bandwidths should be in excess of 50 Hz. The dynamic
range in the pitch/yaw axes should be 200 N-m and #45
degrees. For the roll axes, the dynamic range should
be 50 N-m and +90 degrees. These requirements will
allow large angular motions in three dimensions.

Joints and Actuators: For the static testing, frictionless
joints which give no relative motion are required. For
the dynamic and control testing, torguer motors of
various sizes, depending on the outer links’' weights,
are to be selected to provide large angular displace-
ments (+45 degrees). They should have minimum cogging
and friction characteristics (e.g. direct-drive brush-
less torquers).

Joint Sensors: The joint sensors are to measure positions
and rates. They should have a resolution down into the
arcminute and arcsecond ranges. Their dynamic range
should be +45 degrees and 70 degrees per second. They
should have minimum friction. Plus, the sensors must
be lightweight since they are part of the test article.
At this time, it appears that the incremental optical
encoders may be able to meet these requirements.

Rate Gyroscopes: The gyroscopes are to measure x,y,z rates
and positions of the ends of the links. They are to
provide information for calculating the absolute
angular motions of the following attached link due to
rigid body motion and flexible bending of the previous
link. In addition, three will be mounted to the
underside of the AGS payload mounting plate to measure
its input motion. The gyros are to be analog, capable
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of measuring 25e-3 degrees per second, have a dynamic
range of 70 degrees per second, and bandwidth above 30
Hz.

Accelerometers: These sensors are to measure the
multibody’'s response due to flexible modal content.
They will be located in triax formations at discrete
locations along each link for measuring traverse
deflections in—-the—-plane and out-of-the-plane. Meas-
urement capabilities should be within the 0.1 Hz to 50
Hz frequency range. Resolution should be at least
0.001g with a dynamic range of 5 to 10q9. Again, they
must be lightweight so as to not alter the system
characteristics to a great degree. Two accela2rometers
will be used to measure x,y acceleration of the BET.

Unobtrusive Sensor: Since weight is a major factor in
designing a flexible multibody used in a gravitational
field, link three has been selected to be made of a
very lightweight material. This requires use of
unobtrusive sensors. It is intended to implement a
piezoelectric type sensor developed in the USE program.
It is capable of measuring traverse deflections in—- and
out-of-the-plane directions by reading voltage levels
which are a function of the piezoelectric film defor-
mations. The USE program is also investigating its use
as a sensor/actuator pair.

Data Acquisition and Analysis System: This system has the
following preliminary component selections which
provide the sampling rates, data storage and analysis
capabilities, signal conditioning and compatibility
with existing ACES system. The recommended svstem is a
HP9000 Series 300 workstation (32 bit); LMS (Fourier
Monitor) data acquisition, University of Cincinnati
modal analysis package or Test Data Analysis Software
{TDAS) by Structural Dynamics Research Corporation
(SDRC); a DIFA Measuring System front end signal
conditioning (65 channels); and STRUCTCEL PCB 330A
accelerometers. In addition to the BET, it is recom-
mended to purchase a 30 1lb, long stroke shaker excita-
tion system to allow excitations at locations other
than the base.

Other Data Storage Devices: These include analog strip
chart recorders, analog magnetic tape recorders,
HP-5423 and GenRad 2515 dynamic analyzers which are
available for use in the. LSS laboratory.

Vision Systems were considered. But do to the large test

article(s) undergoing large displacements, they are not
recommended at this time.
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HP9000, Series 300 workstation (32 bit)
Software - LMS (Fourier Monitor) data acquisition,
- University of Cincinnati
modal analysis package
or
- Test Data Analysis Software (TDAS)
by Structural Dynamics Research
Corporation (SDRC)

Front end signal
{ ~ 65 channels),
filters

DIFA Measuring System,
conditioning
A/D, D/A; amplifiers;

STRUCTCEL accelerometers & instrumentation
60 PCB Structcel; 20 triax
mounting blocks; 20 triax cables;
4 patch panels; 4 extension cables

Each additional 20 triax ™~ $5,000

Excitation System
30 1b, long stroke shaker; amplifier;
filter; load cell; conditioning

Piezoelectric film, shielding and instrumentation
for link three’'s sensor (%$1,150) and
actuator (additional $2,650)

Precision Products Group, FG 313 series gyroscopes
4 gyroscopes and instrumentation
(Note, weight may be too large.)

Base excitation table system

Augmented advanced gimbal system

Stairs and MMV platform extension

Second platform
Partial List Total
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$ 60,000

$ 12,000

$ 0

$ 20,000

$100,000

$ 11,000

(initial)

$ 14,900

$ 3,800

$ 60,000

$ 50,000

$100, 000

$150,000

$250,000

_$831,700



CONCLUSIONS

An attempt was made to complete a good portion of the
tasks set forth. Much time was spent in collecting back-
ground information and technical articles on flexible
multibody systems. It was found from the literature search
a recently strong and growing interest has emerged for
developing experimental verification facilities. In paral-
lel with gathering background material, a general dynamic
model analytical formulation of a multibody system, compris-
ing of three flexible bodies connected with revolute joints,
was derived symbolically. This was followed up with select-
ing physical properties and component modes of a three body
system for defining a possible test article for the experi-
mental verification plan. An initial TREETOPS analysis was
performed to estimate the frequency content of the system.
This modeling and analysis completed during the summer
project has laid the foundation for a continuation project
to be executed during the coming year. The project will
involve further analysis and design of the test article via
TREETOPS and NASTRAN and analytical techniques. Following
the modeling and TREETOPS analysis, an initial laboratory
plan for experimental model verification was generated. The
first Phase's testing is expected to begin as early as
summer 1990. The controls verification was taken into
consideration during the plan development of the model
verification laboratory. However, time did not permit a
thorough search of existing control methods and test plan
generation.

RECOMMENDAT IONS

Based on the growing interest and significant need of
understanding flexible multibody systems, it is recommended
that the development of the MMV, USE, and RE laboratories
and their associated research be continued. Due to the
complexities and the dependence on existing numerical code,
advances in the area of flexible multibody systems modeling
and experimental verification have become essential for the
success of future space missions. Hence, with the currently
available space, the feasibility is there for begimning work
on the MMV and USE laboratories as soon as possible. In
addition, there still needs to be more work performed on
modeling, analyzing and defining the fabrication specifica-
tions for the MMV test article(s).
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Figure 1. Planar Multibody with Three Flexible
(Euler-Bernoulli) Links and Three Pinned
Joints

XXX1I-16



Linvk 1

L/NK.Z

Link 3

Figure 2. Proposed Flexible Multibody Test Article
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Table 1.

MMV Test Article Material and Physical Properties,

Link R(cm) b(cm) h{cm) t{cm) A(m2) I(m4)
U e 7 .62 2.54 0.340 6.45e-4 b.6%2-8
2 m———- 3.81 1.27 —--——- 4 .84e-4 6.50e-9
3 0.127 ——— ———— e 5.07e-6 2.04e-12

{(each branch)

Link (kg/m3) E(N/m2) L(m) mg {N) Torquer wt.(N)
1 1.65e3 41.4e9 2.44 25.9 578
2 1.65e3 41.4e9 1.52 11.9 45.8
3 2.11e3 61.0e9 0.762 0.0799 0.862

(each branch)

Material: Link 1 —-- Carbon/Carbon Composite
Link 2 -- Carbon/Carbon Composite
Link 3 —-- Epoxy 70% S-Glass
A = bxh ar A = 2%tx(b + h) - 4xtxt
I = bxhxhxh/12
or 1 = [bxhkhih - (b - 2xt)¥({(h - 2kt)x%x3)1/12
lt
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Table 2.

Component Mode Shapes and Frequenci@s

LIy M5 1794 KS=  #.00000E+00 15=  0.00896E+68 TS=  9.00006E+00

BFRER= 1363 TMSS= T.688

NOOE FREQ Ora) BETA fin Bn {n On KWW K Kb ALPHA  HNOOE
TI65% | LI 8513 -54m  -S13  0.541  0.9516  -1.6e8  -.9516 .00 8.3 5.7
22069 | 3988 B.6t86  -.6161  -.6186  B.6161 1884 1008 -1.884 1.6 0.1180  0.4388
160.87 | 7.086  0.6185  -.6186 -.6185  8.6186 6.9999  -1.080 -.9999  1.060  §.6220E-410.1583
1.9 | 1924 8.6355 6355 6355 06355 1.00  -1.000 -1.008  1.080 B.4435E-010.7660¢ 91
LN ns= | g.783206-1  KS=  0.08080E088 1S=  0.0000BC+60 15 0.80906E+00

BFREg= 13143 TmASS= L.2Mi6

NODE FREQ (wa) BETR fn in (n In [ K Kb ALPHR  KMODE
T489 ] L51 0.678 -9145 -7 8.9145 87380 -1.680 -7 1.0 B.7ISE 1843
25.04 | 440 00409 950 049 0951 .47 1868 -L.M17T  1.080 0.3 §.1601
17094 | 7508 0938 935 9309 09315 6.9993  -1.888  -.9993  1.080  .2300  @.565€-B1
41469 | 1957 09568 -.9568 9568 B.9%8  1.888  -1.089 -1.088  1.808 0167 9.2325¢ -8l
LIKID M5= | 0.0068E+90 KS=  0.03088E+80 IS=  8.90088E+80 1S-  0.0000E+00

bEFREQ=  6.93486  TMASS=  6.B15I6E-82
NODE FREQ (Hz) BEA fin fn (n tn KK K KD ALPHA  HNOOE
T8 ] 14 B3t 1188 B3t 188 T -L.eee -7 1.0 §.672  B.3913-01
k .60 | 4694 128 1088 <1028 1088 1818 1880 -L.el@ 188D 4.886 0.6244E-02
15768 | 7.8 1.7 1088 187 1188 B.99%  -L.ees  -33% 1009 2.09  B.2031E-8¢
1130 | 1.8 1034 134 034 1134 1900 -1ees 1668 1800 7962 8.1165¢-82
(]
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